1 単元名 物質の成り立ち

2 目標
（1）身の回りの化学変化に興味•関心をもち，物質を分解する実験を進んで行い，分解して生成した物質から元の物質の成分を推定しようとする。（自然事象への関心•意欲•態度）
（2）分解して生成した物質を調べる方法を考えるなどして実験を行い，その結果から元の物質 の成分を推定することができる。
（科学的な思考）
（3）分解して生成した物質の性質を調心゙るための実験器具を適切に選択し，それらの基本操作 を習得するとともに，生成した物質の性質についての自らの考えを導き出した報告書を作成 したり，発表したりすることができる。（観察•実験の技能•表現）
（4）物質は熱などにより分解すること及び物質は原子や分子からできており，原子記号で表せ ることを理解し，知識を身に付けることができる。（自然事象についての知識•理解）

3 指導にあたって
（1）教材観
本単元は，「物質を分解する実験を行い，結果を分析して解釈し，分解して生成した物質 から元の物質の成分を推定できることを見いださせ，物質は何からできているかについて考 えさせるとともに，原子や分子からできていることを理解させる。」ことがねらいである。

まず物質がどのような成分から構成されているのかを推定するための探究活動を，酸化銀 や炭酸水素ナトリウムや，水を使って行っていく。この過程で，加熱したり電圧をかけるこ とによって，物質は「分解（化学変化）」すること，分解が起こると新しい物質ができるこ となどを知る。次に，分解により新しい物質ができることは，物質が小さな粒子（分子•原子）からできているためであることを学び，さらに原子や物質を記号で表す方法を学習する， という構成になっている。
（2）生徒の実態
生徒の実態調査（平成○年○月○日実施 第2学年○組 ○名）
1 気体を集める 3 つの方法を答えなさい。
3 つ正答•••11名 2 つ正答•••2名 1 つ正答•••7名
2 次の気体の性質を答えなさい。
（1）酸素 正答•••23名 誤答•••5名（光合成）
（2）二酸化炭素 正答•••21名 誤答•••7名（呼吸でだされる）
③水素 正答•••13名 誤答•••15名（無記入）
3 観察•実験の結果や考察を友だちに説明することができますか。
はい・••6名 いいえ・••22名
4 学校で学習する理科の内容は，あなたの生活に役立っていますか。
はい・••8名 いいえ・••20名
ほとんどの生徒が観察•実験などの学習に対して興味をもつて取り組んでいる。
実態調査の結果から，気体を集める方法（水上置換法•上方置換法•下方置換法）を3つ とも答えられた生徒は，11人しかいなかった。気体の性質では，酸素はものを燃やす，二酸化炭素は石灰水を白く濁す，水に溶けにくい，と多くの生徒が答えていた。しかし，水素 の性質については正答者は半数に達していない。これは，酸素や二酸化炭素は呼吸や光合成 など身近に感じる気体だが，水素は生活の中になかなか感じにくい気体であるためと考えら れる。また，結果や考察を表現することを苦手と感じている生徒や，理科での学習内容と日常生活との結びつきを感じていない生徒も多い。
（3）指導観
1 年生の時に「物質のすがた」で身の回りの物質についての観察，実験を通して，固体や液体，気体の性質，物質の状態変化や，物質の性質や変化の調べ方の基礎を学習している。生徒の実態をふまえて，本単元では，実験で扱う物質は日常生活の中でどのように使われ

ているのかを導入で紹介し，提示の仕方を工夫することで興味•関心をもたせ，学習する意味を伝えたい。また，実物を多く提示したり，視聴覚教材を活用したりして説明する。気体 の性質や集める方法に関しては，理科室に確認するための掲示物を準備するなどして，振り返りながら進めていく。観察•実験では仮説を立て，今までに学習してきた薬品や手段を用 いて検証方法を考えさせる。グループ活動の中では，役割分担をさせることによって，一人一人が責任をもつて観察•実験に取り組めるように支援していく。科学的な思考を高めるた めに話し合う活動を取り入れていく。そのために個人で，予想と結果を記録し，その後比較 しながらグループや全体で話し合う時間を十分に確保する。また，考察しやすいように板書 やワークシートを工夫したい。
（4）テーマとの関連
本単元の観察•実験では，既習学習を生かして，グループごとに仮説を立てたり，検証方法を考えたりするための話し合いを通して，目的意識を高めさせる。また，結果をまとめる場面での話し合いを通して，表現力を身に付けさせる。その後，全体で行うグループの結果 を伝える場面や，他のグループの結果を聞いて考えを深める場面での話し合いを通して，科学的な思考を身に付けさせる。

4 学習計画（11時間取り扱い）

次	時間	学習内容	観点別項目				評価規準
			関	思	技	知	
1	1	物質は何でできて いる	\bigcirc				物質を加熱するとどんな物質ができるか関心をもち，加熱前後の物質の性質を探究し ようとしている。
	2	酸化銀の成分			\bigcirc		物質を熱分解して反応前後の物質の性質を適切な方法で比べることができる。
	（3） （本時）	炭酸水素ナトリウ ムの熱分解			\bigcirc		炭酸水素ナトリウムを加熱して生成した物質から成分を推定することができる。
	4	炭酸水素ナトリウ ムの成分		\bigcirc		\bigcirc	実験結果を基に炭酸水素ナトリウムの成分 を推定し，熱分解について理解することが できる。
2	5	電気分解装置の使 い方			\bigcirc		電気分解装置を組み立てたり，操作したり することができる。
	6	水の電気分解		\bigcirc			結果から水が水素と酸素からできているこ とを推定できる。
3	7	分子•原子		\bigcirc			物質の溶解や状態のちがいを粒子モデルを使って考察することができる。
	8	物質のつくり				\bigcirc	物質は分子や原子が構成要素であることを理解できる。
4	9	原子の記号	\bigcirc				原子を書き表す便利な方法に関心をもち，意欲的に記号で表そうとしている。
	10	化学式			\bigcirc		化合物の組成を化学式で表すことができる。
	11	まとめ				\bigcirc	化学式は物質の組成や分子を表しているこ とを理解し，正しく書くことができる。

5 本時の学習
（1）目標 炭酸水素ナトリウムを加熱するとどのような物質になるか，方法を考え実験し，推定することができる。
（2）準備•資料
炭酸水素ナトリウム，フェノールフタレイン液，塩化コバルト紙，ガスバーナー，薬さじ，水槽，試験管，スタンド，ガラス管つきゴム栓，石灰水，線香，マッチ，ヒントカード
（3）展開
※ 本時における話し合い活動（下線部）

学習内容及び活動
1 本時の課題を知る。
ふつくらホットケーキ，成 功の秘密を探ろう！

2
ホットケーキがふくらんだ理由を考え，発表する。
〈予想される意見〉

- ふくらし粉が入っているから。
- 炭酸水素ナトリウムが入って いるから。
－加熱すると炭酸水素ナトリウ ムがふくらむから。
－加熱すると気体が発生するか ら。

3 どんな物質が発生するのかを
考え，仮説を立て，実験方法を考える。
〈予想される意見〉
－炭酸水素ナトリウムを加熱す ると酸素が発生するので，水上置換法で気体を集め，火の ついた線香を近づける。
－二酸化炭素が発生するので，水上置換法で集め，石灰水を とおす。
－水素が発生するので，水上置換法で集め，火のついたマッ チを近づける。
－加熱すると炭酸水素ナトリウ ムは別の物質になるので，水 への溶け方を比べる。
4 実験器具を準備し，検証実験 をする。
〈予想される実験〉
－試験管に炭酸水素ナトリウム を入れ装置を組み立て加熱し，水上置換法で気体を集め，火 のついた線香を入れて反応を観察する。

5実験結果をまとめ，全体に伝 える。
〈予想される意見〉
－集めた気体を石灰水にとおす と，白く濁ったことから，二酸化炭素が発生し，ホットケ ーキがふくらんだ。
－火のついたマッチを近づけて も爆発しなかったことから，発生した気体は水素ではなく， ホットケーキをふくらませた気体の正体ではない。

6 本時の学習をまとめる。

ホットケーキがふくらむの は，炭酸水素ナトリウムを加熱すると二酸化炭素が発生し たからである。

7 本時の自己評価をする。
8 次時の課題を知る。
気体以外の物質の正体を調 べよう。

な器具や，薬品を後方 の空き机にテーマ別に並べておき，実験の準備をするように伝える。
－実験が早く終わったグ ループには，他の物質 についても調べるよう に声かけをする。
－記録係が，T1に結果 を報告にきたら，チェ ックして黒板に掲示す る。
－グループによって検証方法が違うため，他グ ループの結果もふくめ てまとめができるよう に，ワークシートにメ モをとるように伝える。
－リーダーが大きな声で発表できるように励ま し，支援する。
－前方グループをまわり ながら，まとめができ ている生徒をチェック しておき，発表を促す。
－生徒の発表したまとめ の言葉を使ってまとめ る。

E 加熱によって発生した気体を調べる方法を考 え実験し，推定している。
（観察・ワークシート：科学的な思考）

グループ 一斉 一斉	な器具や，薬品を後方 の空き机にテーマ別に並べておき，実験の準備をするように伝える。 －実験が早く終わったグ ループには，他の物質 についても調べるよう に声かけをする。 －記録係が，T1に結果 を報告にきたら，チェ ックして黒板に掲示す る。 グループによって検証方法が違うため，他グ ループの結果もふくめ てまとめができるよう に，ワークシートにメ モをとるように伝える。 －リーダーが大きな声で発表できるように励ま し，支援する。 －前方グループをまわり ながら，まとめができ ている生徒をチェック しておき，発表を促す。 －生徒の発表したまとめ の言葉を使ってまとめ る。	て，実験できている か，グループをまわ り確認し，進んでい ないグループを支援 する。 －まとめが進んでいな いグループに入り，支援する。 －他のグループの発表 が聞こえているか後方から確認する。 －後方グループをまわ りながら，まとめが できている生徒をチ ェックしておき，発表を促す。
	$\begin{array}{\|c} \hline \text { E 加熱によって発生し } \\ \text { え実験し, 推定してい } \\ \\ \\ \text { (観察・ワー } \end{array}$	体を調べる方法を考 ート：科学的な思考）
$\begin{array}{r\|r\|} \text { 個人 } \\ \text { 一斉 } \end{array}$	－グループごとに自分た ちで，仮説を立て，検証実験を行えたことを ほめる。	－グループをまわりな がら，記入後にワー クシートをグループ ごとにまとめておく ように声をかける。

